转自
前言
声明,此 NeHe OpenGL教程系列文章由51博客翻译(2010-08-19),本博客为转载并稍加整理与修改。对NeHe的OpenGL管线教程的编写,以及yarn的翻译整理表示感谢。
NeHe OpenGL第四十四课:3D光晕
3D 光晕
当镜头对准太阳的时候就会出现这种效果,模拟它非常的简单,一点数学和纹理贴图就够了。好好看看吧。 大家好,欢迎来到新的一课,在这一课中我们将扩展glCamera类,来实现镜头光晕的效果。在日常生活中,当我们对着光源看时,会发现强烈的反光。 为了完成这个效果,我们需要一些数学知识。首先,我们需要一些函数,用来检测某个点或球是否在当前的视景体内。接着我们需要一些纹理作为我们的光晕效果,我们可以把它贴在显示面上。 在我的上一个摄像机类里把下面函数写错了,现在修正如下: void glCamera::SetPrespective(){ GLfloat Matrix[16];
glVector v;
// 根据当前的偏转角旋转视线 glRotatef(m_HeadingDegrees, 0.0f, 1.0f, 0.0f); glRotatef(m_PitchDegrees, 1.0f, 0.0f, 0.0f);
// 返回模型变换矩阵 glGetFloatv(GL_MODELVIEW_MATRIX, Matrix);
// 获得视线的方向 m_DirectionVector.i = Matrix[8]; m_DirectionVector.j = Matrix[9]; m_DirectionVector.k = -Matrix[10];
// 重置矩阵 glLoadIdentity();
// 旋转场景 glRotatef(m_PitchDegrees, 1.0f, 0.0f, 0.0f); glRotatef(m_HeadingDegrees, 0.0f, 1.0f, 0.0f);
// 设置当前摄像机的位置 v = m_DirectionVector; v *= m_ForwardVelocity; m_Position.x += v.i; m_Position.y += v.j; m_Position.z += v.k;
// 变换到新的位置 glTranslatef(-m_Position.x, -m_Position.y, -m_Position.z); }
好了,我们现在开始吧。我将使用4个对立的纹理来制造我们的镜头光晕,第一和二个光晕图像被放置在光源处,第三和第四个图像将根据视点的位置和方向动态的生成。纹理的图像如下所示:
现在你在头脑里应该有了一个大慨地图像了吧。我们来说说何时我们应该绘制光晕,一般来说平时我们是看不见这些光晕的,只有当我们对准光源的时候才能看见这些。所以我们首先要获得视景体的数据,下面的函数可
以帮我们完成这个功能。 // 获得当前视景体的6个平面方程的参数void glCamera::UpdateFrustum(){ GLfloat clip[16]; GLfloat proj[16]; GLfloat modl[16]; GLfloat t; //返回投影矩阵 glGetFloatv( GL_PROJECTION_MATRIX, proj );
//返回模型变换矩阵 glGetFloatv( GL_MODELVIEW_MATRIX, modl );
//计算剪切矩阵,即上面两个矩阵的乘积 clip[ 0] = modl[ 0] * proj[ 0] + modl[ 1] * proj[ 4] + modl[ 2] * proj[ 8] + modl[ 3] * proj[12]; clip[ 1] = modl[ 0] * proj[ 1] + modl[ 1] * proj[ 5] + modl[ 2] * proj[ 9] + modl[ 3] * proj[13]; clip[ 2] = modl[ 0] * proj[ 2] + modl[ 1] * proj[ 6] + modl[ 2] * proj[10] + modl[ 3] * proj[14]; clip[ 3] = modl[ 0] * proj[ 3] + modl[ 1] * proj[ 7] + modl[ 2] * proj[11] + modl[ 3] * proj[15];
clip[ 4] = modl[ 4] * proj[ 0] + modl[ 5] * proj[ 4] + modl[ 6] * proj[ 8] + modl[ 7] * proj[12]; clip[ 5] = modl[ 4] * proj[ 1] + modl[ 5] * proj[ 5] + modl[ 6] * proj[ 9] + modl[ 7] * proj[13]; clip[ 6] = modl[ 4] * proj[ 2] + modl[ 5] * proj[ 6] + modl[ 6] * proj[10] + modl[ 7] * proj[14]; clip[ 7] = modl[ 4] * proj[ 3] + modl[ 5] * proj[ 7] + modl[ 6] * proj[11] + modl[ 7] * proj[15];
clip[ 8] = modl[ 8] * proj[ 0] + modl[ 9] * proj[ 4] + modl[10] * proj[ 8] + modl[11] * proj[12]; clip[ 9] = modl[ 8] * proj[ 1] + modl[ 9] * proj[ 5] + modl[10] * proj[ 9] + modl[11] * proj[13]; clip[10] = modl[ 8] * proj[ 2] + modl[ 9] * proj[ 6] + modl[10] * proj[10] + modl[11] * proj[14]; clip[11] = modl[ 8] * proj[ 3] + modl[ 9] * proj[ 7] + modl[10] * proj[11] + modl[11] * proj[15];
clip[12] = modl[12] * proj[ 0] + modl[13] * proj[ 4] + modl[14] * proj[ 8] + modl[15] * proj[12]; clip[13] = modl[12] * proj[ 1] + modl[13] * proj[ 5] + modl[14] * proj[ 9] + modl[15] * proj[13]; clip[14] = modl[12] * proj[ 2] + modl[13] * proj[ 6] + modl[14] * proj[10] + modl[15] * proj[14]; clip[15] = modl[12] * proj[ 3] + modl[13] * proj[ 7] + modl[14] * proj[11] + modl[15] * proj[15];
//提取右面的平面方程系数 m_Frustum[0][0] = clip[ 3] - clip[ 0]; m_Frustum[0][1] = clip[ 7] - clip[ 4]; m_Frustum[0][2] = clip[11] - clip[ 8]; m_Frustum[0][3] = clip[15] - clip[12]; t = GLfloat(sqrt( m_Frustum[0][0] * m_Frustum[0][0] + m_Frustum[0][1] * m_Frustum[0][1] + m_Frustum[0][2] * m_Frustum[0][2] )); m_Frustum[0][0] /= t; m_Frustum[0][1] /= t; m_Frustum[0][2] /= t; m_Frustum[0][3] /= t;
//提取左面的平面方程系数 m_Frustum[1][0] = clip[ 3] + clip[ 0]; m_Frustum[1][1] = clip[ 7] + clip[ 4]; m_Frustum[1][2] = clip[11] + clip[ 8]; m_Frustum[1][3] = clip[15] + clip[12]; t = GLfloat(sqrt( m_Frustum[1][0] * m_Frustum[1][0] + m_Frustum[1][1] * m_Frustum[1][1] + m_Frustum[1][2] * m_Frustum[1][2] )); m_Frustum[1][0] /= t; m_Frustum[1][1] /= t; m_Frustum[1][2] /= t; m_Frustum[1][3] /= t;
//提取下面的平面方程系数 m_Frustum[2][0] = clip[ 3] + clip[ 1]; m_Frustum[2][1] = clip[ 7] + clip[ 5]; m_Frustum[2][2] = clip[11] + clip[ 9]; m_Frustum[2][3] = clip[15] + clip[13]; t = GLfloat(sqrt( m_Frustum[2][0] * m_Frustum[2][0] + m_Frustum[2][1] * m_Frustum[2][1] + m_Frustum[2][2] * m_Frustum[2][2] )); m_Frustum[2][0] /= t; m_Frustum[2][1] /= t; m_Frustum[2][2] /= t; m_Frustum[2][3] /= t;
//提取上面的平面方程系数 m_Frustum[3][0] = clip[ 3] - clip[ 1]; m_Frustum[3][1] = clip[ 7] - clip[ 5]; m_Frustum[3][2] = clip[11] - clip[ 9]; m_Frustum[3][3] = clip[15] - clip[13]; t = GLfloat(sqrt( m_Frustum[3][0] * m_Frustum[3][0] + m_Frustum[3][1] * m_Frustum[3][1] + m_Frustum[3][2] * m_Frustum[3][2] )); m_Frustum[3][0] /= t; m_Frustum[3][1] /= t; m_Frustum[3][2] /= t; m_Frustum[3][3] /= t;
//提取远面的平面方程系数 m_Frustum[4][0] = clip[ 3] - clip[ 2]; m_Frustum[4][1] = clip[ 7] - clip[ 6]; m_Frustum[4][2] = clip[11] - clip[10]; m_Frustum[4][3] = clip[15] - clip[14]; t = GLfloat(sqrt( m_Frustum[4][0] * m_Frustum[4][0] + m_Frustum[4][1] * m_Frustum[4][1] + m_Frustum[4][2] * m_Frustum[4][2] )); m_Frustum[4][0] /= t; m_Frustum[4][1] /= t; m_Frustum[4][2] /= t; m_Frustum[4][3] /= t;
//提取近面的平面方程系数 m_Frustum[5][0] = clip[ 3] + clip[ 2]; m_Frustum[5][1] = clip[ 7] + clip[ 6]; m_Frustum[5][2] = clip[11] + clip[10]; m_Frustum[5][3] = clip[15] + clip[14]; t = GLfloat(sqrt( m_Frustum[5][0] * m_Frustum[5][0] + m_Frustum[5][1] * m_Frustum[5][1] + m_Frustum[5][2] * m_Frustum[5][2] )); m_Frustum[5][0] /= t; m_Frustum[5][1] /= t; m_Frustum[5][2] /= t; m_Frustum[5][3] /= t; }
现在我们可以测试一个点或圆是否在视景体内了。下面的函数可以测试一个点是否在视景体内。 BOOL glCamera::PointInFrustum(glPoint p){ int i; for(i = 0; i < 6; i++) { if(m_Frustum[i][0] * p.x + m_Frustum[i][1] * p.y +
m_Frustum[i][2] * p.z + m_Frustum[i][3] <= 0) { return(FALSE); } } return(TRUE);}
下面的函数用来测试某个点是否位于当前场景物体的前面: bool glCamera::IsOccluded(glPoint p){ GLint viewport[4]; GLdouble mvmatrix[16], projmatrix[16];
GLdouble winx, winy, winz; GLdouble flareZ; GLfloat bufferZ;
glGetIntegerv (GL_VIEWPORT, viewport); glGetDoublev (GL_MODELVIEW_MATRIX, mvmatrix); glGetDoublev (GL_PROJECTION_MATRIX, projmatrix);
// 返回顶点p在单位立方体中的位置 gluProject(p.x, p.y, p.z, mvmatrix, projmatrix, viewport, &winx, &winy, &winz); flareZ = winz;
// 读取点(winx,winy)的深度坐标 glReadPixels(winx, winy,1,1,GL_DEPTH_COMPONENT, GL_FLOAT, &bufferZ);
// 如果深度坐标小于点的坐标,则返回true if (bufferZ < flareZ) return true; //否则返回false else return false; }
我们通过检测光源是否正对我们的视线来决定是否绘制光晕,但如果你的视点超过了光源的位置,则会发生看不见光晕的现象。为了避免这种现象,我们在移动视点的使用,也相应的移动我们的光源。为了在视点和光
源之间绘制多个光晕,我们需要计算之间的向量,下面的代码完成这个功能: //下面的函数完成具体的渲染光晕的任务void glCamera::RenderLensFlare(){ GLfloat Length = 0.0f; // 如果我们的光源在我们的视线范围内,则绘制它 if(SphereInFrustum(m_LightSourcePos, 1.0f) == TRUE) { vLightSourceToCamera = m_Position - m_LightSourcePos; // 计算光源到我们视线的距离 Length = vLightSourceToCamera.Magnitude();
//下面三个函数计算光源位置到光晕结束位置之间的向量 ptIntersect = m_DirectionVector * Length; ptIntersect += m_Position; vLightSourceToIntersect = ptIntersect - m_LightSourcePos; Length = vLightSourceToIntersect.Magnitude(); vLightSourceToIntersect.Normalize();
glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE); glDisable(GL_DEPTH_TEST); glEnable(GL_TEXTURE_2D);
首先我们需要找到光源位置和视点位置之间的向量,接下来我们需要在视线的方向设置一个插值点,这个点的距离必须和光源位置和视点位置之间的距离相等。完成以后,我们找出可以产生光晕的方向,即下图红线的
方向,在这个线上我们可以绘制我们的光晕。
if (!IsOccluded(m_LightSourcePos)) //如果光晕可见 { // 渲染中间的光晕 RenderBigGlow(0.60f,
0.60f, 0.8f, 1.0f, m_LightSourcePos, 16.0f); RenderStreaks(0.60f, 0.60f, 0.8f, 1.0f, m_LightSourcePos, 16.0f);
RenderGlow(0.8f, 0.8f, 1.0f, 0.5f, m_LightSourcePos, 3.5f); //绘制到光晕结束位置的0.1处的光晕 pt = vLightSourceToIntersect * (Length * 0.1f); pt += m_LightSourcePos; RenderGlow(0.9f, 0.6f, 0.4f, 0.5f, pt, 0.6f);
//绘制到光晕结束位置的0.15处的光晕 pt = vLightSourceToIntersect * (Length * 0.15f); pt += m_LightSourcePos; RenderHalo(0.8f, 0.5f, 0.6f, 0.5f, pt, 1.7f);
//绘制到光晕结束位置的0.175处的光晕 pt = vLightSourceToIntersect * (Length * 0.175f); pt += m_LightSourcePos; RenderHalo(0.9f, 0.2f, 0.1f, 0.5f, pt, 0.83f);
//绘制到光晕结束位置的0.285处的光晕 pt = vLightSourceToIntersect * (Length * 0.285f); pt += m_LightSourcePos; RenderHalo(0.7f, 0.7f, 0.4f, 0.5f, pt, 1.6f);
//绘制到光晕结束位置的0.2755处的光晕 pt = vLightSourceToIntersect * (Length * 0.2755f); pt += m_LightSourcePos; RenderGlow(0.9f, 0.9f, 0.2f, 0.5f, pt, 0.8f);
//绘制到光晕结束位置的0.4755处的光晕 pt = vLightSourceToIntersect * (Length * 0.4775f); pt += m_LightSourcePos; RenderGlow(0.93f, 0.82f, 0.73f, 0.5f, pt, 1.0f);
//绘制到光晕结束位置的0.49处的光晕 pt = vLightSourceToIntersect * (Length * 0.49f); pt += m_LightSourcePos; RenderHalo(0.7f, 0.6f, 0.5f, 0.5f, pt, 1.4f);
//绘制到光晕结束位置的0.65处的光晕 pt = vLightSourceToIntersect * (Length * 0.65f); pt += m_LightSourcePos; RenderGlow(0.7f, 0.8f, 0.3f, 0.5f, pt, 1.8f);
//绘制到光晕结束位置的0.63处的光晕 pt = vLightSourceToIntersect * (Length * 0.63f); pt += m_LightSourcePos; RenderGlow(0.4f, 0.3f, 0.2f, 0.5f, pt, 1.4f);
//绘制到光晕结束位置的0.8处的光晕 pt = vLightSourceToIntersect * (Length * 0.8f); pt += m_LightSourcePos; RenderHalo(0.7f, 0.5f, 0.5f, 0.5f, pt, 1.4f);
//绘制到光晕结束位置的0.7825处的光晕 pt = vLightSourceToIntersect * (Length * 0.7825f); pt += m_LightSourcePos; RenderGlow(0.8f, 0.5f, 0.1f, 0.5f, pt, 0.6f);
//绘制到光晕结束位置的1.0处的光晕 pt = vLightSourceToIntersect * (Length * 1.0f); pt += m_LightSourcePos; RenderHalo(0.5f, 0.5f, 0.7f, 0.5f, pt, 1.7f);
//绘制到光晕结束位置的0.975处的光晕 pt = vLightSourceToIntersect * (Length * 0.975f); pt += m_LightSourcePos; RenderGlow(0.4f, 0.1f, 0.9f, 0.5f, pt, 2.0f);
} glDisable(GL_BLEND ); glEnable(GL_DEPTH_TEST); glDisable(GL_TEXTURE_2D); } }
好了,下面的函数用来绘制四种不同的光晕 //绘制Halo形的光晕void glCamera::RenderHalo(GLfloat r, GLfloat g, GLfloat b, GLfloat a, glPoint p, GLfloat scale){ glPoint q[4]; q[0].x = (p.x -
scale); q[0].y = (p.y - scale);
q[1].x = (p.x - scale);
q[1].y = (p.y + scale); q[2].x =
(p.x + scale); q[2].y = (p.y - scale);
q[3].x = (p.x + scale);
q[3].y = (p.y + scale);
glPushMatrix(); glTranslatef(p.x, p.y, p.z);
glRotatef(-m_HeadingDegrees, 0.0f, 1.0f, 0.0f); glRotatef(-m_PitchDegrees, 1.0f, 0.0f,
0.0f); glBindTexture(GL_TEXTURE_2D, m_HaloTexture); glColor4f(r, g, b, a);
glBegin(GL_TRIANGLE_STRIP);
glTexCoord2f(0.0f, 0.0f); glVertex2f(q[0].x, q[0].y); glTexCoord2f(0.0f,
1.0f); glVertex2f(q[1].x, q[1].y); glTexCoord2f(1.0f, 0.0f); glVertex2f(q[2].x, q[2].y); glTexCoord2f(1.0f,
1.0f); glVertex2f(q[3].x, q[3].y); glEnd(); glPopMatrix
(); } //绘制Gloew形的光晕 void glCamera::RenderGlow(GLfloat r, GLfloat g, GLfloat b, GLfloat a, glPoint p, GLfloat scale) { glPoint q[4];
q[0].x = (p.x - scale); q[0].y = (p.y - scale);
q[1].x = (p.x - scale); q[1].y = (p.y + scale);
q[2].x = (p.x + scale); q[2].y = (p.y - scale);
q[3].x = (p.x + scale); q[3].y = (p.y + scale);
glPushMatrix(); glTranslatef(p.x, p.y, p.z); glRotatef(-m_HeadingDegrees, 0.0f, 1.0f, 0.0f); glRotatef(-m_PitchDegrees, 1.0f, 0.0f, 0.0f); glBindTexture(GL_TEXTURE_2D, m_GlowTexture); glColor4f(r, g, b, a);
glBegin(GL_TRIANGLE_STRIP); glTexCoord2f(0.0f, 0.0f); glVertex2f(q[0].x, q[0].y); glTexCoord2f(0.0f, 1.0f); glVertex2f(q[1].x, q[1].y); glTexCoord2f(1.0f, 0.0f); glVertex2f(q[2].x, q[2].y); glTexCoord2f(1.0f, 1.0f); glVertex2f(q[3].x, q[3].y); glEnd(); glPopMatrix(); }
//绘制BigGlow形的光晕 void glCamera::RenderBigGlow(GLfloat r, GLfloat g, GLfloat b, GLfloat a, glPoint p, GLfloat scale) { glPoint q[4];
q[0].x = (p.x - scale); q[0].y = (p.y - scale);
q[1].x = (p.x - scale); q[1].y = (p.y + scale);
q[2].x = (p.x + scale); q[2].y = (p.y - scale);
q[3].x = (p.x + scale); q[3].y = (p.y + scale);
glPushMatrix(); glTranslatef(p.x, p.y, p.z); glRotatef(-m_HeadingDegrees, 0.0f, 1.0f, 0.0f); glRotatef(-m_PitchDegrees, 1.0f, 0.0f, 0.0f); glBindTexture(GL_TEXTURE_2D, m_BigGlowTexture); glColor4f(r, g, b, a);
glBegin(GL_TRIANGLE_STRIP); glTexCoord2f(0.0f, 0.0f); glVertex2f(q[0].x, q[0].y); glTexCoord2f(0.0f, 1.0f); glVertex2f(q[1].x, q[1].y); glTexCoord2f(1.0f, 0.0f); glVertex2f(q[2].x, q[2].y); glTexCoord2f(1.0f, 1.0f); glVertex2f(q[3].x, q[3].y); glEnd(); glPopMatrix(); }
//绘制Streaks形的光晕 void glCamera::RenderStreaks(GLfloat r, GLfloat g, GLfloat b, GLfloat a, glPoint p, GLfloat scale) { glPoint q[4];
q[0].x = (p.x - scale); q[0].y = (p.y - scale);
q[1].x = (p.x - scale); q[1].y = (p.y + scale);
q[2].x = (p.x + scale); q[2].y = (p.y - scale);
q[3].x = (p.x + scale); q[3].y = (p.y + scale);
glPushMatrix(); glTranslatef(p.x, p.y, p.z); glRotatef(-m_HeadingDegrees, 0.0f, 1.0f, 0.0f); glRotatef(-m_PitchDegrees, 1.0f, 0.0f, 0.0f); glBindTexture(GL_TEXTURE_2D, m_StreakTexture); glColor4f(r, g, b, a);
glBegin(GL_TRIANGLE_STRIP); glTexCoord2f(0.0f, 0.0f); glVertex2f(q[0].x, q[0].y); glTexCoord2f(0.0f, 1.0f); glVertex2f(q[1].x, q[1].y); glTexCoord2f(1.0f, 0.0f); glVertex2f(q[2].x, q[2].y); glTexCoord2f(1.0f, 1.0f); glVertex2f(q[3].x, q[3].y); glEnd(); glPopMatrix(); } 原文及其个版本源代码下载: